

EC150 and CSAT3A

Open-Path CO_/H,O Gas Analyzer and Sonic Anemometer

Innovative Design Use as part of open-path

eddy-covariance system

Overview

Campbell Scientific's EC150 is an open-path analyzer specifically designed for eddy covariance flux measurements. Combined with the CSAT3A sonic anemometer as shown above, these two components

Benefits and Features

- > Unique optical configuration gives a slim aerodynamic shape with minimal wind distortion
- Low power consumption; suitable for solar power applications
- Low noise
- > Measurements are temperature compensated without active heat control
- > Analyzer and sonic anemometer measurements are synchronized by a common set of electronics
- Maximum output rate of 50 Hz with 25 Hz bandwidth
- > Tolerant to window contamination
- > Angled windows to shed water
- > Field rugged

Outputs

EC150

- CO₂ Density (mg/m³)
- H₂O Density (g/m³)
- Gas Analyzer Diagnostic
- > Ambient Temperature (°C)

- Atmospheric Pressure (kPa)
- CO₂ Signal Strength
- H₂O Signal Strength
- > Source Temperature (°C)

of an open-path eddy-covariance system simultaneously measure carbon dioxide, water vapor, air temperature, barometric pressure, and three-dimensional wind speed and sonic air temperature.

- > Field serviceable
- Factory calibrated over wide range of CO₂, H₂O, pressure, and temperature in all combinations encountered in practice
- Extensive set of diagnostic parameters
- Fully compatible with Campbell Scientific dataloggers; field setup, configuration, and field zero and span can be accomplished directly from the datalogger
- > Speed of Sound: Determined from 3 acoustic paths; corrected for crosswind effects
- Rain: Innovative signal processing and transducer wicks considerably improves performance of the anemometer during precipitation events
 - CSAT3A
 - → U_x (m/s)
 -) U_y (m/s)
 -) U_z (m/s)
 - Sonic Temperature (°C)
 - > Sonic Diagnostic

General Specifications^a

- > Operating Temperature Range: -30° to +50°C
- Calibrated Pressure Range: 70 to 106 kPa
- Input Voltage: 10 to 16 Vdc
- Power @ 25°C: 5 W (steady state and power up)
- Measurement Rate: 100 Hz
- Output Bandwidth: 5, 10, 12.5, 20, or 25 Hz; user programmable
- Output Options: SDM, RS-485, USB, analog

Gas Analyzer Specifications^{a,b}

Path Length: 15.37 cm (6.05 in)

Performance

- Auxiliary Inputs: air temperature and pressure
- **W**eight
- EC150 Head and Cables: 2.0 kg (4.4 lb) CSAT3A Head and Cables: 1.7 kg (3.7 lb) EC100 Electronics: 3.2 kg (7.1 lb)
- Cable Length: 3 m (10 ft) from EC150 and CSAT3A to EC100
- Gas Analyzer/Sonic Volume Separation: 5.0 cm (2.0 in)

	CO2	H ₂ O	
Accuracy ^c	1% of reading	2% of reading	
Precision RMS (maximum) ^d	0.2 mg/m³ (0.15 μmol/mol)	0.004 g/m ³ (0.006 mmol/mol)	
Calibrated Range	0 to 1,000 μmol/mol (0 to 3,000 μmol/mol optional) ^e	0 to 72 mmol/mol (37°C dewpoint)	
Zero Drift with Temperature (maximum)	±0.55 mg/m³/°C (±0.3 µmol/mol/°C)	±0.037 g/m³/°C (±0.05 mmol/mol/°C)	
Gain Drift with Temperature (maximum)	±0.1% of reading/°C	±0.3% of reading/°C	
Cross Sensitivity (maximum)	$\pm 1.1 \text{ x } 10^{-4} \text{ mol CO}_2 \text{ /mol H}_2 \text{O}$	±0.1 mol H ₂ O/mol CO ₂	

Sonic Anemometer Specifications^a

Measurement Path

- > Vertical: 10.0 cm (3.9 in)
- Horizontal: 5.8 cm (2.3 in)

Transducer Diameter

) 0.64 cm (0.25 in)

Range

- ↓ u_x: ±30 m s⁻¹
- → u_y: ±60 m s⁻¹
-) u_z: ±8 m s⁻¹
- **)** T_s: -50° to +60°C
- Wind Direction: ±170°

Accuracy^f

> Offset Error u_x, u_y: <±8.0 cm s⁻¹ u_z: <±4.0 cm s⁻¹ Wind Direction: ±0.7° while horizontal wind at 1 m s⁻¹
> Gain Error Wind Vector within ±5° of horizontal: <±2% of reading Wind Vector within ±10° of horizontal: <±3% of reading Wind Vector within ±20° of horizontal: <±6% of reading
> Measurement Precision RMS u_x, u_y: 1 mm s⁻¹ u_z: 0.5 mm s⁻¹ Sonic Temperature: 0.025°C Wind Direction: 0.6°

Barometer Specifications^a

	-BB Basic Barometer	-EB Enhanced Barometer (Vaisala PTB110)
Total Accuracy	± 3.7 kPa at -30°C, falling linearly to ± 1.5 kPa at 0°C (-30° to 0°C), ± 1.5 kPa (0° to 50°C)	±0.15 kPa (-30° to +50°C)
Measurement Rate	10 Hz	1 Hz

Ambient Temperature Specifications^a

Manufacturer: BetaTherm 100K6A1IA

Total Accuracy: ±0.15°C (-30° to +50°C)

^aSubject to change without notice.

^bA temperature of 20°C and pressure of 101.325 kPa was used to convert mass density to concentration.

^cAssumes the gas analyzer was properly zero and spanned using the appropriate standards; CO_2 span concentration was 400 ppm; H_2O span dewpoint was at 12°C (16.7 ppt); zero/span temperature was 25°C; zero/span pressure was 84 kPa; subsequent measurements made at or near the span concentration; temperature is not more than ±6°C from the zero/span temperature; and ambient temperature is within the gas analyzer operating temperature range. ^dNominal conditions for precision verification test: 23°C, 86 kPa, 400 µmol/mol CO_2 , 12°C dewpoint, and 20 Hz bandwidth.

^eUpon request.

^{*f*}The accuracy specification for the sonic anemometer is for wind speeds <30 m s⁻¹ and wind angles between $\pm 170^{\circ}$.

 CAMPBELL
 Campbell Scientific, Inc.
 815 W 1800 N
 Logan, UT 84321-1784
 (435) 227-9000
 www.campbellsci.com

 SCIENTIFIC
 USA | AUSTRALIA | BRAZIL | CANADA | CHINA | COSTA RICA | ENGLAND | FRANCE | GERMANY | SOUTH AFRICA | SPAIN

© 2011, 2013 Campbell Scientific, Inc. July 15, 2013